Home
Scholarly Works
Revealing divergent length scales using quantum...
Journal article

Revealing divergent length scales using quantum Fisher information in the Kitaev honeycomb model

Abstract

We compute the quantum Fisher information (QFI) associated with two different local operators in the ground state of the Kitaev honeycomb model, and find divergent behavior in the second derivatives of these quantities with respect to the driving parameter at the quantum phase transition between the gapped and gapless phases for both fully antiferromagnetic and fully ferromagnetic exchange couplings, thus demonstrating that the second derivative a locally defined, experimentally accessible, QFI can detect topological quantum phase transitions. The QFI associated with a local magnetization operator behaves differently from that associated with a local bond operator depending on whether the critical point is approached from the gapped or gapless side. We show how the behavior of the second derivative of the QFI at the critical point can be understood in terms of the diverging length scales associated to the two and four point correlators of the Majorana degrees of freedom. We present critical exponents associated with the divergences of these length scales.

Authors

Lambert J; Sørensen ES

Journal

Physical Review B, Vol. 102, No. 22,

Publisher

American Physical Society (APS)

Publication Date

December 1, 2020

DOI

10.1103/physrevb.102.224401

ISSN

2469-9950

Contact the Experts team