Home
Scholarly Works
Experiments and Numerical Simulations of...
Conference

Experiments and Numerical Simulations of Interlocked Materials

Abstract

Interlocked materials are new examples of “hybrid materials”, mixing materials and structures at a millimetric scale. They consist of periodic assemblies of elementary blocks with specific shapes, maintained in contact by compressive boundary conditions. These “pre-fragmented materials” can simultaneously fulfil antagonistic properties such as high strength together with good damage tolerance. We performed indentation tests on two different structures: (i) an assembly of osteomorphic ice blocks and (ii) an assembly of plaster made cubes. The tests being performed up to the failure, it is found that these structures dissipate much more mechanical energy than similar monolithic plates and preserve their integrity up to much larger deformation. A numerical modelling is then developed in order to reproduce this behaviour. Using finite elements, we simulated the friction contact between two elastic cubes or blocks, for a given lateral load and friction coefficient. The outputs are then introduced as local contact rules in a “Discrete Elements code” specially developed for this study. The discrete code is then used to model the elastic and damage behaviour of assemblies of cubes or osteomorphic blocks. The comparison with experimental results is satisfactory. Finally, the code is used to model larger assemblies of interlocked structures for which the force path is analysed.

Authors

Brugger C; Bréchet Y; Fivel M

Volume

47-50

Pagination

pp. 125-128

Publisher

Trans Tech Publications

Publication Date

June 9, 2008

DOI

10.4028/www.scientific.net/amr.47-50.125

Conference proceedings

Advanced Materials Research

ISSN

1022-6680

Labels

Fields of Research (FoR)

View published work (Non-McMaster Users)

Contact the Experts team