Home
Scholarly Works
Identification of a Novel Pathway Essential for...
Journal article

Identification of a Novel Pathway Essential for the Immediate-Early, Interferon-Independent Antiviral Response to Enveloped Virions

Abstract

Viral infection elicits the activation of numerous cellular signal transduction pathways, leading to the induction of both innate and adaptive immunity. Previously we showed that entry of virion particles from a diverse array of enveloped virus families was capable of eliciting an interferon regulatory factor 3 (IRF-3)-mediated antiviral state in human fibroblasts in the absence of interferon production. Here we show that extracellular regulated kinase 1/2, p38 mitogen-activated protein kinase, and Jun N-terminal kinase/stress-activated protein kinase activities are not required for antiviral state induction. In contrast, treatment of cells with LY294002, an inhibitor of the phosphoinositide 3-kinase (PI3 kinase) family, prevents the induction of interferon-stimulated gene 56 (ISG56) and an antiviral response upon entry of virus particles. However, the prototypic class I p85/p110 PI3 kinase and its downstream effector Akt/PKB are dispensable for ISG and antiviral state induction. Furthermore, DNA-PK and PAK1, LY294002-sensitive members of the PI3 kinase family shown previously to be involved in IRF-3 activation, are also dispensable for ISG and antiviral state induction. The LY294002 inhibitor fails to prevent IRF-3 homodimerization or nuclear translocation upon virus particle entry. Together, these data suggest that virus entry triggers an innate antiviral response that requires the activity of a novel PI3 kinase family member.

Authors

Noyce RS; Collins SE; Mossman KL

Journal

Journal of Virology, Vol. 80, No. 1, pp. 226–235

Publisher

American Society for Microbiology

Publication Date

January 1, 2006

DOI

10.1128/jvi.80.1.226-235.2006

ISSN

0022-538X

Contact the Experts team