Home
Scholarly Works
Two-component structural phase-field crystal...
Journal article

Two-component structural phase-field crystal models for graphene symmetries

Abstract

We extend the three-point XPFC model of Seymour & Provatas (Seymour & Provatas 2016 Phys. Rev. B93, 035447 (doi:10.1103/PhysRevB.93.035447)) to two components to capture chemical vapour deposition-grown graphene, and adapt a previous two-point XPFC model of Greenwood et al. (Greenwood et al. 2011 Phys. Rev. B84, 064104 (doi:10.1103/PhysRevB.84.064104)) into a simple model of two-component graphene. The equilibrium properties of these models are examined and the two models are compared and contrasted. The first model is used to study the possible roles of hydrogen in graphene grain boundaries. The second model is used to study the role of hydrogen in the dendritic growth morphologies of graphene. The latter results are compared with new experiments.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.

Authors

Elder KLM; Seymour M; Lee M; Hilke M; Provatas N

Journal

Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences, Vol. 376, No. 2113,

Publisher

The Royal Society

Publication Date

February 28, 2018

DOI

10.1098/rsta.2017.0211

ISSN

1364-503X

Contact the Experts team