Phase Evolution During Sintering of Mullite/zirconia Composites Using Silica-coated Alumina Powders Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Mullite-based composites can be made by an in situ reaction process using silica-coated alumina (SCA) powder as a mullite precursor. In this paper we present the combined effects of zirconia and premullite seeds on the crystallization process and microstructure development. When zirconia is added without seeding, mullite formation proceeds through the formation of transient zircon. This phase provides a lower energy barrier for mullite nucleation and thus lowers the mullitization temperature. The presence of yttria as a stabilizer in zirconia reduces the activation energy for zircon formation and thus promotes the transient reaction. The addition of premullite seeds results in the nucleation of mullite from alumina and silica, and zircon does not form. At low seeding levels mullitization remains nucleation-controlled; however, once the seeding level exceeds 1–2%, this is no longer the case.

publication date

  • June 2000