Efficient Discovery of Ontology Functional Dependencies
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Poor data quality has become a pervasive issue due to the increasing
complexity and size of modern datasets. Constraint based data cleaning
techniques rely on integrity constraints as a benchmark to identify and correct
errors. Data values that do not satisfy the given set of constraints are
flagged as dirty, and data updates are made to re-align the data and the
constraints. However, many errors often require user input to resolve due to
domain expertise defining specific terminology and relationships. For example,
in pharmaceuticals, 'Advil' \emph{is-a} brand name for 'ibuprofen' that can be
captured in a pharmaceutical ontology. While functional dependencies (FDs) have
traditionally been used in existing data cleaning solutions to model syntactic
equivalence, they are not able to model broader relationships (e.g., is-a)
defined by an ontology. In this paper, we take a first step towards extending
the set of data quality constraints used in data cleaning by defining and
discovering \emph{Ontology Functional Dependencies} (OFDs). We lay out
theoretical and practical foundations for OFDs, including a set of sound and
complete axioms, and a linear inference procedure. We then develop effective
algorithms for discovering OFDs, and a set of optimizations that efficiently
prune the search space. Our experimental evaluation using real data show the
scalability and accuracy of our algorithms.