abstract
- We present a theory of three dimensional fractionalized topological insulators in the form of U(1) spin liquids with gapped fermionic spinons in the bulk and topologically protected gapless spinon surface states. Starting from a spin-1/2 model on a pyrochlore lattice, with frustrated antiferromagnetic and ferromagnetic exchange interactions, we show that decomposition of the latter interactions, within slave-fermion representation of the spins, can naturally give rise to an emergent spin-orbit coupling for the spinons. This stabilizes a fractionalized topological insulators which also have bulk bond spin-nematic order. Finally, we describe the low energy properties of these states.