Ionic mechanisms underlying electrical slow waves in canine airway smooth muscle Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In canine bronchial smooth muscle (BSM), spasmogens evoke oscillations in membrane potential (“slow waves”). The depolarizing phase of the slow waves is mediated by voltage-dependent Ca2+ channels; we examined the roles played by Cl and K+ currents and Na+-K+-ATPase activity in mediating the repolarizing phase. Slow waves were evoked using tetraethylammonium (25 mM) in the presence or absence of niflumic acid (100 μM; Cl channel blocker) or ouabain (10 μM; block Na+-K+-ATPase) or after elevating external K+concentration ([K+]) to 36 mM (to block K+ currents); curve fitting was performed to quantitate the rates of rise/fall and frequency under these conditions. Slow waves were markedly slowed, and eventually abolished, by niflumic acid but were unaffected by ouabain or high [K+]. Electrically evoked slow waves were also blocked in similar fashion by niflumic acid. We conclude that the repolarization phase is mediated by Ca2+-dependent Cl currents. This information, together with our earlier finding that the depolarizing phase is due to voltage-dependent Ca2+ current, suggests that slow waves in canine BSM involve alternating opening and closing of Ca2+ and Cl channels.

publication date

  • September 1, 1998