Home
Scholarly Works
Free radicals uncouple the sodium pump in pig...
Journal article

Free radicals uncouple the sodium pump in pig coronary artery

Abstract

Free radicals may impair vital functions of several types of tissues including coronary artery smooth muscle. Because the Na+ pump plays a key role in maintaining coronary tone, the effects of superoxide and peroxide on this protein were examined. Ouabain-sensitive Rb+ uptake by denuded coronary artery rings was used in lieu of K+ transport by this pump. It was inhibited by exposing the rings for 90 min either to peroxide [50% inhibitory concentration (IC50) = 0.56 +/- 0.18 mM] or to superoxide generated by xanthine oxidase (XO; 0.3 mM xanthine and xanthine oxidase, IC50 = 0.08 +/- 02 mU/ml). The effect of peroxide was not overcome by superoxide dismutase and that of superoxide was not prevented by catalase. K(+)-activated ouabain-sensitive hydrolysis of p-nitrophenyl phosphate in the plasma membrane-enriched fraction isolated from the coronary artery smooth muscle was monitored as the hydrolytic activity of the Na+ pump. It was inhibited by exposing the membranes only to very high concentrations of peroxide (IC50 = 9.85 +/- 3.5 mM) or XO (IC50 = 5 +/- 2 mU/ml). The exposure to 2.5 mM H2O2 or 0.5 mU/ml XO reduced the Na(+)-dependent acylphosphate levels only by 41 +/- 3 and 30 +/- 4%, respectively even though either inhibited the Rb+ uptake by > 80%. Thus superoxide and peroxide uncoupled the hydrolytic activity of the Na+ pump from Rb+ uptake. We speculate that such an uncoupling in ischemia and reperfusion would result in dual damage: ion imbalance and continuous hydrolysis of ATP in the cells that are already starved.

Authors

Elmoselhi AB; Butcher A; Samson SE; Grover AK

Journal

American Journal of Physiology, Vol. 266, No. 3, pp. c720–c728

Publisher

American Physiological Society

Publication Date

March 1, 1994

DOI

10.1152/ajpcell.1994.266.3.c720

ISSN

0002-9513

Contact the Experts team