On the Ca2+ Dependence of Non-transferrin-bound Iron Uptake in PC12 Cells
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Non-transferrin-bound iron (NTBI) uptake has been reported to follow two pathways, Ca(2+)-dependent and Ca(2+)-independent (Wright, T. L., Brissot, P., Ma, W. L., and Weisiger, R. A. (1986) J. Biol. Chem. 261, 10909-10914; Sturrock, A., Alexander, J., Lamb, J., Craven, C. M., and Kaplan, J. (1990) J. Biol. Chem. 265, 3139-3145). Studies reporting the two pathways have ignored the weak interactions of Ca(2+) with the chelator nitrilotriacetate (NTA) and the reducing agent ascorbate. These studies used a constant ratio of total Fe(2+) to NTA with and without Ca(2+). We observed Ca(2+) activation of NTBI uptake in PC12 cells with the characteristics reported for other cells upon using 1 mm ascorbate and a constant ratio of total Fe(2+) to NTA with or without Ca(2+). However, Ca(2+) did not affect NTBI uptake in solutions without NTA. We then determined conditional stability constants for NTA binding to Ca(2+) and Fe(2+) by potentiometry under conditions of NTBI uptake experiments (pH, ionic strength, temperature, ascorbate, total Fe(2+), and total Ca(2+) concentrations). In solutions based on these constants and taking Ca(2+) chelation into account, Ca(2+) did not affect NTBI uptake over a range of free Fe(2+) concentrations. Thus, the Ca(2+) activation of NTBI uptake observed using the constant total Fe(2+) to NTA ratio was because of Ca(2+)-NTA chelation rather than an activation of the NTBI transporter itself. It is suggested that the previously reported Ca(2+) dependence of NTBI uptake be re-evaluated.