Molecular signatures for the phylum Synergistetes and some of its subclades Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Species belonging to the phylum Synergistetes are poorly characterized. Though the known species display Gram-negative characteristics and the ability to ferment amino acids, no single characteristic is known which can define this group. For eight Synergistetes species, complete genome sequences or draft genomes have become available. We have used these genomes to construct detailed phylogenetic trees for the Synergistetes species and carried out comprehensive analysis to identify molecular markers consisting of conserved signature indels (CSIs) in protein sequences that are specific for either all Synergistetes or some of their sub-groups. We report here identification of 32 CSIs in widely distributed proteins such as RpoB, RpoC, UvrD, GyrA, PolA, PolC, MraW, NadD, PyrE, RpsA, RpsH, FtsA, RadA, etc., including a large >300 aa insert within the RpoC protein, that are present in various Synergistetes species, but except for isolated bacteria, these CSIs are not found in the protein homologues from any other organisms. These CSIs provide novel molecular markers that distinguish the species of the phylum Synergistetes from all other bacteria. The large numbers of other CSIs discovered in this work provide valuable information that supports and consolidates evolutionary relationships amongst the sequenced Synergistetes species. Of these CSIs, seven are specifically present in Jonquetella, Pyramidobacter and Dethiosulfovibrio species indicating a cladal relationship among them, which is also strongly supported by phylogenetic trees. A further 15 CSIs that are only present in Jonquetella and Pyramidobacter indicate a close association between these two species. Additionally, a previously described phylogenetic relationship between the Aminomonas and Thermanaerovibrio species was also supported by 9 CSIs. The strong relationships indicated by the indel analysis provide incentives for the grouping of species from these clades into higher taxonomic groups such as families or orders. The identified molecular markers, due to their specificity for Synergistetes and presence in highly conserved regions of important proteins suggest novel targets for evolutionary, genetic and biochemical studies on these bacteria as well as for the identification of additional species belonging to this phylum in different environments.

publication date

  • November 2012