Effects of intense swimming and tetanic electrical stimulation on skeletal muscle ions and metabolites Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The purpose of this study was to compare changes in ions and metabolites in four different rat hindlimb muscles in response to intense swimming exercise in vivo (263 +/- 33 s) (SWUM), and to 5 min (300 s) of tetanic electrical stimulation of artificially perfused rat hindlimbs (STIM). With both swimming and electrical stimulation, soleus (SOL) contents of creatine phosphate (CP), ATP, and glycogen changed the least, whereas the largest decreases in these metabolites occurred in the white gastrocnemius (WG). Lactate (La-) accumulation and glycogen breakdown were significantly greater in SWUM hindlimb muscles compared with STIM. The high arterial La- concentration [( La-] = 20 meq.l-1) in SWUM may have contributed to elevated muscle [La-], whereas one-pass perfusion kept arterial [La-] below 2 meq.l–1 in STIM. In SWUM, intracellular [Na+] increased significantly in the plantaris (PL), red gastrocnemius (RG), and WG, but not in SOL. [Cl-] increased, and [K+], [Ca2+], and [Mg2+] decreased in all muscles. In STIM, intracellular [K+], [Mg2+], and [Ca2+] decreased significantly, whereas [Na+] and [Cl-] increased in all muscles. Differences in the magnitude of ion and fluid fluxes between groups can be explained by the different methods of hindlimb perfusion. In conclusion, STIM is a useful model of in vivo energy metabolism and permits mechanisms of transsarcolemmal ion movements to be studied.

publication date

  • December 1, 1987