Glycogen phosphorylase and pyruvate dehydrogenase transformation in white muscle of trout during high-intensity exercise Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We examined the regulation of glycogen phosphorylase (Phos) and pyruvate dehydrogenase (PDH) in white muscle of rainbow trout during a continuous bout of high-intensity exercise that led to exhaustion in 52 s. The first 10 s of exercise were supported by creatine phosphate hydrolysis and glycolytic flux from an elevated glycogenolytic flux and yielded a total ATP turnover of 3.7 μmol · g wet tissue−1· s−1. The high glycolytic flux was achieved by a large transformation of Phos into its active form. Exercise performed from 10 s to exhaustion was at a lower ATP turnover rate (0.5 to 1.2 μmol · g wet tissue−1· s−1) and therefore at a lower power output. The lower ATP turnover was supported primarily by glycolysis and was reduced because of posttransformational inhibition of Phos by glucose 6-phosphate accumulation. During exercise, there was a gradual activation of PDH, which was fully transformed into its active form by 30 s of exercise. Oxidative phosphorylation, from PDH activation, only contributed 2% to the total ATP turnover, and there was no significant activation of lipid oxidation. The time course of PDH activation was closely associated with an increase in estimated mitochondrial redox (NAD+-to-NADH concentration ratio), suggesting that O2was not limiting during high-intensity exercise. Thus anaerobiosis may not be responsible for lactate production in trout white muscle during high-intensity exercise.

publication date

  • March 1, 2002