Is ribonucleotide reductase the transforming function of herpes simplex virus 2? Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Transformation of cells by herpes simplex virus 2 (HSV-2) can be induced by the BglII C (0.43-0.58 map units) or N (0.58-0.625) fragments of the viral genome. Sequences partially overlapping both fragments (0.566-0.602) encode two 3' coterminal mRNAs; these in turn direct the synthesis of two related polypeptides of molecular weight 140,000 (140K) and 35K (refs 4, 7), which may be involved in transformation. Recently, a temperature-sensitive (ts) mutation affecting HSV-induced ribonucleotide reductase has been mapped within this common region (B.M. Dutia, personal communication). We have partially purified the induced reductase and raised a rabbit antiserum to it which inhibits the enzyme activity and immunoprecipitates from infected cells a 144K polypeptide and minor species including a 38K polypeptide. Here we show that a monoclonal antibody to the putative transforming proteins competes with the rabbit serum for the 144K and 38K antigens and also immunoprecipitates specifically the induced reductase activity. These results suggest a possible role for ribonucleotide reductase in HSV-2-induced transformation.

publication date

  • March 1983