Home
Scholarly Works
Contribution of erythrocytes to the control of the...
Journal article

Contribution of erythrocytes to the control of the electrolyte changes of exercise

Abstract

Five healthy males performed four 30-s bouts of maximal isokinetic cycling with 4 min rest between each bout. Arterial and femoral venous blood was sampled during and for 90 min following exercise. During exercise, arterial erythrocyte [K+] increased from 117.0 +/- 6.6 mequiv./L at rest to 124.2 +/- 5.9 mequiv./L after the second exercise bout. Arterial erythrocyte [K+] returned to the resting values during the first 5 min of recovery. No significant change was observed in femoral venous erythrocyte [K+]. Arterial erythrocyte lactate concentration ([Lac-]) increased during exercise from 0.2 +/- 0.1 mequiv./L peaking at 9.5 +/- 1.5 mequiv./L at 5 min of recovery, after which the values returned to control. Femoral venous erythrocyte [Lac-] changed in a similar fashion. Arterial erythrocyte [Cl-] rose during exercise to 76 +/- 3 mequiv./L and returned to resting values (70 +/- 2 mequiv./L) by 25 min recovery. During exercise there was a net flux of Cl- into the erythrocyte. We conclude that erythrocytes are a sink for K+ ions leaving working muscles. Furthermore, erythrocytes function to transport Lac- from working muscle and reduce plasma acidosis by uptake of Cl-. The erythrocyte uptake of K+, Lac-, and Cl- helps to maintain a concentration difference between plasma and muscle, facilitating diffusion of Lac- and K+ from the interstitial space into femoral venous plasma.

Authors

McKelvie RS; Lindinger MI; Heigenhauser GJ; Jones NL

Journal

Canadian Journal of Physiology and Pharmacology, Vol. 69, No. 7, pp. 984–993

Publisher

Canadian Science Publishing

Publication Date

July 1, 1991

DOI

10.1139/y91-148

ISSN

0008-4212

Contact the Experts team