Down‐regulation of myeloid cell leukemia 1 by epigallocatechin‐3‐gallate sensitizes rheumatoid arthritis synovial fibroblasts to tumor necrosis factor α–induced apoptosis Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • AbstractObjectiveOverexpression of the antiapoptotic protein myeloid cell leukemia 1 (Mcl‐1) in rheumatoid arthritis (RA) synovial fibroblasts is a major cause of their resistance to tumor necrosis factor α (TNFα)–induced apoptosis. This study was undertaken to evaluate the efficacy of epigallocatechin‐3‐gallate (EGCG) in down‐regulating Mcl‐1 expression and its mechanism of RA synovial fibroblast sensitization to TNFα‐induced apoptosis.MethodsEGCG effects on cultured RA synovial fibroblast cell morphology, proliferation, and viability over 72 hours were determined by microscopy and a fluorescent cell enumeration assay. Caspase 3 activity was determined by a colorimetric assay. Western blotting was used to evaluate the apoptosis mediators poly(ADP‐ribose) polymerase (PARP), Mcl‐1, Bcl‐2, Akt, and nuclear translocation of NF‐κB.ResultsIn RA synovial fibroblasts, EGCG (5–50 μM) inhibited constitutive and TNFα‐induced Mcl‐1 protein expression in a concentration‐ and time‐dependent manner (P < 0.05). Importantly, EGCG specifically abrogated Mcl‐1 expression in RA synovial fibroblasts and affected Mcl‐1 expression to a lesser extent in osteoarthritis and normal synovial fibroblasts or endothelial cells. Inhibition of Mcl‐1 by EGCG triggered caspase 3 activity in RA synovial fibroblasts, which was mediated via down‐regulation of the TNFα‐induced Akt and NF‐κB pathways. Caspase 3 activation by EGCG also suppressed RA synovial fibroblast growth, and this effect was mimicked by Akt and NF‐κB inhibitors. Interestingly, Mcl‐1 degradation by EGCG sensitized RA synovial fibroblasts to TNFα‐induced PARP cleavage and apoptotic cell death.ConclusionOur findings indicate that EGCG itself induces apoptosis and further sensitizes RA synovial fibroblasts to TNFα‐induced apoptosis by specifically blocking Mcl‐1 expression and, hence, may be of promising adjunct therapeutic value in regulating the invasive growth of synovial fibroblasts in RA.

authors

  • Ahmed, Salahuddin
  • Silverman, Matthew D
  • Marotte, Hubert
  • Kwan, Kevin
  • Matuszczak, Natalie
  • Koch, Alisa E

publication date

  • May 2009

has subject area