Comparison and analysis of bubble growth and foam formation models Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • PurposeThe main purpose of this paper is to present and compare two different models for bubble growth and foam formation and to conduct a thorough assessment in terms of their numerical implementation and prediction accuracy.Design/methodology/approachThe two models are assessed and validated against experimental measurements. The first model is known as a single bubble growth model and treats the foaming process as a single bubble growing in a large pool with enough gas available for growth, while the second model (cell model) takes into account the finiteness of gas supply availability as well as the effects of surrounding bubbles. The models are based on the application of the conservation of continuity and momentum principles and on constitutive equations to represent the viscosity of the melt. The models are numerically implemented using a finite difference scheme and their predictions are compared against experimental measurements.FindingsThe results demonstrate that the single bubble model predicts an infinite bubble growth with time due to the assumption of unlimited supply of the blowing agent. Meanwhile the cell model gives an equilibrium bubble size because it accounts for gas depletion. From this work, it was concluded that the cell model is the best model that adequately describes experimental data.Practical implicationsThe problem of bubble growth and foam formation is of great importance in the process industry as it plays a key role in diverse technological fields such as the production of foamed plastics.Originality/valueThe findings here are important for the appropriate modeling of bubble growth and foam formation and for scheduling and optimizing the process. A simple model will suffice for the early stage of the process while a cell model is more appropriate for the entire duration of the process.

publication date

  • April 6, 2010