Vasoflux, a New Anticoagulant With a Novel Mechanism of Action Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • BACKGROUND: Heparin and direct thrombin inhibitors, such as hirudin, have limitations in the treatment of acute coronary syndromes. Heparin does not inactivate fibrin-bound thrombin, whereas hirudin fails to block thrombin generation. In contrast, Vasoflux is a novel anticoagulant that inactivates fibrin-bound thrombin and attenuates factor Xa generation. METHODS AND RESULTS: Vasoflux is prepared by depolymerization of heparin, restricting molecular size to between 3000 and 8000 Da, and reducing antithrombin affinity by periodate oxidation. Vasoflux catalyzes fibrin-bound thrombin inactivation by heparin cofactor II (HCII) and inhibits factor IXa activation of factor X independently of antithrombin and HCII. Compared with other anticoagulants in a thrombogenic extracorporeal circuit, Vasoflux maintains filter patency at concentrations that produce an activated clotting time (ACT) of 220 seconds. In contrast, to maintain filter patency, heparin, low-molecular-weight heparin (LMWH), and hirudin require concentrations that produced an ACT of 720, 415, and >1500 seconds, respectively, whereas dermatan sulfate was ineffective at concentrations that produced an ACT of 360 seconds. CONCLUSIONS: Vasoflux is more effective than heparin and LMWH because it inactivates fibrin-bound thrombin and is superior to hirudin and dermatan sulfate because it also blocks factor Xa generation.

publication date

  • February 9, 1999