By Increasing the Affinity of Heparin for Fibrin, Zn2+ Promotes the Formation of a Ternary Heparin–Thrombin–Fibrin Complex That Protects Thrombin from Inhibition by Antithrombin
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Heparin binds fibrin and, by bridging thrombin onto fibrin, promotes the formation of a ternary heparin-thrombin-fibrin complex that protects thrombin from inhibition by antithrombin. Because thrombin binds γ(A)/γ'-fibrin, a variant with an extended γ-chain, with higher affinity than the bulk γ(A)/γ(A)-fibrin, γ(A)/γ'-fibrin affords bound thrombin more protection from inhibition by antithrombin-heparin. We examined the effect of Zn(2+) on heparin-thrombin-fibrin complex formation because Zn(2+) modulates heparin-protein interactions. Zn(2+) increased the affinity of heparin for γ(A)/γ(A)- and γ(A)/γ'-fibrin by 4.3- and 3.7-fold, respectively, but had no effect on the affinity of thrombin for either form of fibrin. In contrast, in the presence of heparin, Zn(2+) increased the affinity of thrombin for γ(A)/γ(A)-fibrin 4-fold (from a K(d) value of 0.8 to 0.2 μM) and slowed the rate of thrombin dissociation from γ(A)/γ(A)-fibrin clots. These findings suggest that Zn(2+) enhances the formation of ternary heparin-thrombin-fibrin complexes with γ(A)/γ(A)-fibrin but does not influence the already high affinity interaction of thrombin with γ(A)/γ'-fibrin. Consistent with this concept, in the presence of Zn(2+), γ(A)/γ(A)-fibrin protected thrombin from inhibition by antithrombin-heparin to a similar extent as γ(A)/γ'-fibrin. Therefore, by enhancing the binding of heparin to fibrin, physiological concentrations of Zn(2+) render fibrin-bound thrombin more protected from inhibition by antithrombin. Because fibrin-bound thrombin can trigger thrombus expansion, these findings help to explain why recurrent thrombosis can occur despite heparin treatment.