Stimulation of the Mu DNA strand cleavage and intramolecular strand transfer reactions by the Mu B protein is independent of stable binding of the Mu B protein to DNA.
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Interactions between the Mu A and Mu B proteins are important in the early steps of the in vitro transposition of a mini-Mu plasmid. We have examined these interactions by assaying Mu B stimulation of Mu A-mediated strand cleavage and strand transfer reactions. We have previously shown that in the presence of ATP the Mu B protein can stimulate the Mu A-directed cleavage reaction of mini-Mu plasmids carrying a terminal base pair mutation (Surette, M.G., Harkness, T., and Chaconas, G. (1991) J. Biol. Chem. 266, 3118-3124). Here we demonstrate that in the absence of a non-Mu DNA target molecule the Mu B protein stimulates intramolecular integration of a mini-Mu in an ATP-dependent fashion. Furthermore, modification of the Mu B protein with N-ethylmaleimide severely compromises the ability of B to form a stable complex with DNA; however, the modified protein stimulates the strand cleavage and intramolecular strand transfer reactions as efficiently as the untreated protein. These results indicate that the Mu B protein is capable of stimulating the Mu A protein through direct interaction in the absence of stable Mu B-DNA complex formation. Our results increase the spectrum of Mu B protein activities and uncouple the stimulatory properties of the Mu B protein from stable DNA binding but not the ATP cofactor requirement.