Mediation and modulation by eicosanoids of responses of spinal dorsal horn neurons to glutamate and substance P receptor agonists: results with indomethacin in the rat in vivo Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • In view of the widespread use of non-steroidal anti-inflammatory drugs for treatment of inflammatory pain, we determined the effects of the non-steroidal anti-inflammatory drug, indomethacin, on dorsal horn neurons in the rat spinal cord in vivo. At 2.0-12.0 mg/kg (i.v.), indomethacin depressed the responses of spinal dorsal horn neurons to the effects of iontophoretic application of substance P, N-methyl-D-aspartate, quisqualate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate. As indomethacin inhibits cyclo-oxygenase, these are the first data linking prostanoids and possibly arachidonic acid and other eicosanoids to the effects of substance P and glutamate in the spinal dorsal horn. As responses to iontophoretic application can be assumed to have been postsynaptic and as indomethacin had an effect generalized to all excitatory responses, we suggest a postsynaptic site for cyclo-oxygenase. We also suggest that elements in the cyclo-oxygenase signal transduction pathway may thus mediate at least some of the effects of substance P and glutamate receptor activation. Activation of the cyclo-oxygenase pathway in CNS neurons is Ca2- dependent, and activation of both N-methyl-D-aspartate and substance P receptors increases intracellular Ca2+. This led to the expectation that indomethacin would have a greater effect on responses to N-methyl-D-aspartate than to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, but the reverse was observed. Thus, in addition to a mediator role, we hypothesize that an element(s) of the cyclo-oxygenase pathway may regulate the efficacy of excitation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors and perhaps other membrane-bound receptors. The cyclo-oxygenase signal transduction pathway thus appears to play at least two major roles in regulation of sensory processing in the spinal cord. Therefore, non-steroidal anti-inflammatory drugs, via cyclo-oxygenase inhibition, may have multiple actions in control of spinal sensory mechanisms.

publication date

  • August 1999

has subject area