Home
Scholarly Works
Local hardness equalization: Exploiting the...
Journal article

Local hardness equalization: Exploiting the ambiguity

Abstract

In the density-functional theory of chemical reactivity, the local hardness is known to be an ambiguous concept. The mathematical structure associated with this problematic situation is elaborated and three common definitions for the local hardness are critically examined: the frontier local hardness [S. K. Ghosh, Chem. Phys. Lett. 172, 77 (1990)], the total local hardness [S. K. Ghosh and M. Berkowitz, J. Chem. Phys. 83, 2976 (1985)], and the unconstrained local hardness [P. W. Ayers and R. G. Parr, J. Am. Chem. Soc. 122, 2010 (2000)]. The frontier local hardness has particularly nice properties: (a) it has smaller norm than most, if not all, other choices of the local hardness and (b) it is "unbiased" in an information-theoretic sense. For the ground electronic state of a molecular system, the frontier local hardness is equal to the global hardness. For an electronic system in its ground state, both the chemical potential and the frontier local hardness are equalized. The frontier local hardness equalization principle provides a computational approach for designing reagents with desirable chemical reactivity profiles.

Authors

Ayers PW; Parr RG

Journal

The Journal of Chemical Physics, Vol. 128, No. 18,

Publisher

AIP Publishing

Publication Date

May 14, 2008

DOI

10.1063/1.2918731

ISSN

0021-9606

Contact the Experts team