The association among skeletal muscle phosphocreatine recovery, adiposity, and insulin resistance in children Academic Article uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • BACKGROUND: Obesity is associated with cardiometabolic disturbances, which may have significant implications for musculoskeletal health and exercise tolerance. OBJECTIVE: We sought to determine the association between muscle structure, function, and metabolism in adolescents across the weight spectrum. METHODS: This cross-sectional case-control study included overweight and obese participants (n = 24) 8-18 years of age with a body mass index (BMI) ≥ 85th percentile for age and gender, and non-obese participants (n = 24) with a BMI < 85th percentile. Body composition, physical activity, peak aerobic capacity, cardiometabolic blood markers and insulin resistance (measured by the homeostatic model assessment of insulin resistance, HOMA-IR), skeletal muscle mitochondrial oxidative capacity (via 31 Phosphorous-Magnetic Resonance Spectroscopy, 31 P-MRS, to assess phosphocreatine (PCr) recovery after exercise), and extramyocellular and intramyocellular lipid (IMCL) levels (via 1 Hydrogen-MRS) were assessed. Stepwise regression was performed to examine the factors associated with oxidative capacity. RESULTS: bese and overweight patients had similar age, height, and physical activity to non-obese controls, but obese and overweight participants exhibited higher insulin resistance. Obese and overweight participants had longer PCr recovery than non-obese controls following 5x30s of moderate-intensity exercise (51.2 ± 20.1 s vs. 23.9 ± 7.5 s, p = 0.004). In univariate correlation analysis, impaired PCr recovery was associated with a higher BMI z-score (rs  = 0.51, p < 0.001), circulating triglycerides (rs  = 0.41, p = 0.005), and HOMA-IR (rs  = 0.46, p = 0.001). In stepwise multivariate regression analysis, impaired PCr recovery was associated with a higher BMI z-score (β = 0.47, p = 0.002), but not insulin resistance (β = 0.07, p = 0.07) or circulating triglycerides (β = 0.16 p = 0.33). CONCLUSION: A slower phosphocreatine recovery following aerobic exercise is strongly associated with increasing adiposity. A slower metabolic recovery following aerobic exercise stress suggests that endurance exercise training in obese adolescents may be an optimal strategy to target exercise intolerance in this cohort.

authors

publication date

  • April 2017