Home
Scholarly Works
A stress sensitive ER membrane-association domain...
Journal article

A stress sensitive ER membrane-association domain in Huntingtin protein defines a potential role for Huntingtin in the regulation of autophagy

Abstract

We have recently published the precise definition of an aminoterminal membrane association domain in huntingtin, capable of targeting to the endoplasmic reticulum and late endosomes as well as autophagic vesicles. In response to ER stress induced by several pathways, huntingtin releases from membranes and rapidly translocates into the nucleus. Huntingtin is then capable of nuclear export and re-association with the ER in the absence of stress. This release is inhibited when huntingtin contains the polyglutamine expansion seen in Huntington's disease. As a result, mutant huntingtin expressing cells have a perturbed ER and an increase in autophagic vesicles. Here, we discuss the potential function of the huntingtin protein as an ER sentinel, potentially regulating autophagy in response to ER stress. We compare these recent findings to the well characterized mammalian target of rapamycin, mTor, a protein described over a decade ago as related to huntingtin structurally by leucine-rich, repetitive HEAT sequences. Since then, the described functional similarities between Huntingtin and mTor are striking, and this new information about huntingtin's direct association with autophagic vesicles indicates that this structural similarity may extend to functional similarities having an impact upon ER functionality and autophagy.

Authors

Atwal RS; Truant R

Journal

Autophagy, Vol. 4, No. 1, pp. 91–93

Publisher

Taylor & Francis

Publication Date

January 1, 2008

DOI

10.4161/auto.5201

ISSN

1554-8627

Contact the Experts team