Reliability of the long-range power-law correlations obtained from the bilateral stride intervals in asymptomatic volunteers whilst treadmill walking
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Stride intervals measured during steady-state walking are irregular. These stride interval fluctuations are not random but exhibit long-range power-law correlation (alpha) such that a given stride interval is 'influenced' by earlier variations in the stride intervals. To estimate alpha, one requires a minute long sequence of right or left side stride interval data. However, to obtain a reliable alpha point estimate, the minimal stride sequence length is unknown. Additionally, it is unknown if the right and left side alpha are equivalent. In this study, the within-day and the right and left side reliabilities of alpha point estimates were examined in 23 volunteers performing three 8-min treadmill walks. In addition, eight volunteers were retested on three additional days to estimate between-day reliability. The standard error of measurement (S.E.M.) and the within- and between-day intraclass correlation (ICC) values, and their 95% confidence intervals, each calculated using the combined right and left leg 8-min alpha estimates were acceptable [0.047 (0.044-0.051); 0.914 (0.882-0.932) and 0.769 (0.689-0.815), respectively]. The left alpha (0.688 +/- 0.93) was greater than the right alpha (0.664 +/- 0.094), albeit this finding was underpowered (0.55). The alpha point estimates obtained from the full 8-min walks provided minimal S.E.M. and maximal within- and between-day ICCs. However, the minimal S.E.M. was statistically indistinguishable from the 6- and 7-min walk durations and all of the within-day and between-day ICCs were similar except for the 3- and 8-min between-day ICCs. This study suggests that data from four 3 min, three 6 min or two 8 min walk duration trials provide reliable alpha point estimates from a short series of short treadmill walks.