Positive end-expiratory pressure above lower inflection point minimizes influx of activated neutrophils into lung* Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • OBJECTIVES: To compare the effects of low vs. high tidal volume (Vt) with three positive end-expiratory pressure (PEEP) strategies on activated neutrophil influx into the lung. DESIGN: Prospective, randomized controlled animal study. SETTING: Animal laboratory in a university hospital. SUBJECTS: Newborn piglets. INTERVENTIONS: Surfactant-depleted piglets were randomized in littermate pairs; to PEEP of either 0 (zero end-expiratory pressure [ZEEP]; n = 6), 8 cm H2O (PEEP 8; n = 5), or 1 cm H2O above the lower inflection point (LIP) (PEEP>LIP; n = 6). Within each pair piglets were randomized to a low VT (5-7 mL/kg) or high VT strategy (17-19 mL/kg). After 4 hrs of mechanical ventilation, 18-fluorodeoxyglucose (18FDG) was injected and positron emission tomography scanning was performed. MEASUREMENTS AND MAIN RESULTS: VT and PEEP changes on influx constants of 18FDG were assessed by analysis of variance. A within-litter comparison of Vt was nonsignificant (p = .50). A between-litter comparison, ordered in linear trend rank, from ZEEP, to PEEP 8, to PEEP>LIP, showed a strong effect of PEEP on influx constant (p = .019). CONCLUSIONS: PEEP set above the LIP on the inspiratory limb of the pressure-volume curve affords a stronger lung protection than VT strategy.

publication date

  • December 2004

has subject area