Home
Scholarly Works
Cigarette Smoke Primes the Pulmonary Environment...
Journal article

Cigarette Smoke Primes the Pulmonary Environment to IL-1α/CXCR-2–Dependent Nontypeable Haemophilus influenzae–Exacerbated Neutrophilia in Mice

Abstract

Cigarette smoke has a broad impact on the mucosal environment with the ability to alter host defense mechanisms. Within the context of a bacterial infection, this altered host response is often accompanied by exacerbated cellular inflammation, characterized by increased neutrophilia. The current study investigated the mechanisms of neutrophil recruitment in a murine model of cigarette smoke exposure and, subsequently, a model of both cigarette smoke exposure and bacterial infection. We investigated the role of IL-1 signaling in neutrophil recruitment and found that cigarette smoke-induced neutrophilia was dependent on IL-1α produced by alveolar macrophages. In addition to being the crucial source of IL-1α, alveolar macrophages isolated from smoke-exposed mice were primed for excessive IL-1α production in response to bacterial ligands. To test the relevance of exaggerated IL-1α production in neutrophil recruitment, a model of cigarette smoke exposure and nontypeable Haemophilus influenzae infection was developed. Mice exposed to cigarette smoke elaborated an exacerbated CXCR2-dependent neutrophilia in response to nontypeable Haemophilus influenzae. Exacerbated neutrophilia was dependent on IL-1α priming of the pulmonary environment by cigarette smoke as exaggerated neutrophilia was dependent on IL-1 signaling. These data characterize a novel mechanism of cigarette smoke priming the lung mucosa toward greater IL-1-driven neutrophilic responses to bacteria, with a central role for the alveolar macrophage in this process.

Authors

Nikota JK; Shen P; Morissette MC; Fernandes K; Roos A; Chu DK; Barra NG; Iwakura Y; Kolbeck R; Humbles AA

Journal

The Journal of Immunology, Vol. 193, No. 6, pp. 3134–3145

Publisher

Oxford University Press (OUP)

Publication Date

September 15, 2014

DOI

10.4049/jimmunol.1302412

ISSN

0022-1767

Contact the Experts team