abstract
- Using an exact diagonalization treatment of Ising and Heisenberg model Hamiltonians, we study field-induced phase transition for two-dimensional antiferromagnets. For the system of Ising antiferromagnet the predicted field-induced phase transition is of first order, while for the system of Heisenberg antiferromagnet it is the second-order transition. We find from the exact diagonalization calculations that the second-order phase transition (metamagnetism) occurs through a spin-flop process as an intermediate step.