Estimate of mean tissue O2 consumption at onset of exercise in males Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • A mathematical model has been developed that permitted the calculation of the flow-weighted mean tissue O2 consumption (VO2T) at the onset of a step increase in work rate. From breath-by-breath measurements of alveolar O2 consumption (VO2A) and cardiac output (Q) by impedance cardiography and assumptions about the site of depletion of O2 stores, the rate of change in O2 stores (VO2s) was determined. The sum of VO2A + VO2s = VO2T. Six very fit males performed six repetitions of each of two step increases in work rate. STlo was a transition from rest to 100-W cycling; SThi was a transition from 100- to 200-W cycling. For each work rate transition, the responses of VO2A and Q were averaged over the six repetitions of each subject and the model was solved to yield VO2T. The responses of VO2A, VO2T, and Q after the increase in work rate were fit with a monoexponential function. This function included a time constant and time delay, the sum of which gave the mean response time (MRT). In the STlo test, the MRT of VO2A (24.9 +/- 1.1 s, mean +/- SE) was longer than that of VO2T (15.3 +/- 1.3 s) and of Q (16.5 +/- 6.5 s) (P less than 0.05). The MRT of VO2T and Q did not differ significantly. Also for SThi, the MRT of VO2A (34.4 +/- 3.3 s) was significantly longer than that of VO2T (30.0 +/- 3.4 s) (P less than 0.05). The MRT of VO2T and Q (30.3 +/- 5.5 s) were not significantly different at this work rate either.(ABSTRACT TRUNCATED AT 250 WORDS)

publication date

  • October 1, 1987