Muscarinic excitation-contraction coupling mechanisms in tracheal and bronchial smooth muscles Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • We investigated the mechanisms underlying muscarinic excitation-contraction coupling in canine airway smooth muscle using organ bath, fura 2 fluorimetric, and patch-clamp techniques. Cyclopiazonic acid (CPA) augmented the responses to submaximal muscarinic stimulation in both tracheal (TSM) and bronchial smooth muscles (BSM), consistent with disruption of the barrier function of the sarcoplasmic reticulum. During maximal stimulation, however, CPA evoked substantial relaxation in TSM but not BSM. CPA reversal of carbachol tone persisted in the presence of tetraethylammoium or high KCl, suggesting that hyperpolarization is not involved; CPA relaxations were absent in tissues preconstricted with KCl alone or by permeabilization with β-escin, ruling out a nonspecific effect on the contractile apparatus. Peak contractions were sensitive to inhibitors of tyrosine kinase (genistein) or Rho kinase (Y-27632). Sustained responses were dependent on Ca2+influx in TSM but not BSM; this influx was sensitive to Ni2+ but not La3+. In conclusion, there are several mechanisms underlying excitation-contraction coupling in airway smooth muscle, the relative importance of which varies depending on tissue and degree of stimulation.

publication date

  • September 1, 2001

has subject area