Home
Scholarly Works
A New System for Profiling Drug-Induced Calcium...
Journal article

A New System for Profiling Drug-Induced Calcium Signal Perturbation in Human Embryonic Stem Cell–Derived Cardiomyocytes

Abstract

The emergence of human stem cell-derived cardiomyocyte (hSCCM)-based assays in the cardiovascular (CV) drug discovery sphere requires the development of improved systems for interrogating the rich information that these cell models have the potential to yield. We developed a new analytical framework termed SALVO (synchronization, amplitude, length, and variability of oscillation) to profile the amplitude and temporal patterning of intra- and intercellular calcium signals in hSCCM. SALVO quantified drug-induced perturbations in the calcium signaling "fingerprint" in spontaneously contractile hSCCM. Multiparametric SALVO outputs were integrated into a single index of in vitro cytotoxicity that confirmed the rank order of perturbation as astemizole > thioridazine > cisapride > flecainide > valdecoxib > sotalol > nadolol ≈ control. This rank order of drug-induced Ca(2+) signal disruption is in close agreement with the known arrhythmogenic liabilities of these compounds in humans. Validation of the system using a second set of compounds and hierarchical cluster analysis demonstrated the utility of SALVO to discriminate drugs based on their mechanisms of action. We discuss the utility of this new mechanistically agnostic system for the evaluation of in vitro drug cytotoxicity in hSCCM syncytia and the potential placement of SALVO in the early stage drug screening framework.

Authors

Lewis KJ; Silvester NC; Barberini-Jammaers S; Mason SA; Marsh SA; Lipka M; George CH

Journal

SLAS DISCOVERY, Vol. 20, No. 3, pp. 330–340

Publisher

Elsevier

Publication Date

March 1, 2015

DOI

10.1177/1087057114557232

ISSN

2472-5552

Contact the Experts team