Cortical α4β2-nicotinic acetylcholine receptors and cognitive decline in Parkinson's disease.
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
BackgroundAutopsy and in vivo molecular imaging studies suggest altered binding of the α4β2-nicotinic cholinergic receptor (α4β2-nAChR) with cognitive dysfunction in Parkinson's disease (PD).ObjectiveTo determine the relationship between cortical and hippocampal binding of the α4β2-nAChR with [18F]XTRA PET, a high-affinity radiotracer that enables quantification of α4β2-nAChR in these regions, and cognitive function in individuals with PD.MethodsIndividuals with PD (N = 32) and age-similar, controls without PD or dementia (N = 10) completed a cognitive assessment and one 90-min, [18F]XTRA PET scan. Metabolite-corrected arterial input function radioactivity time-activity curves were generated to obtain total distribution volume (VT) across 12 regions of interest (ROIs). [18F]XTRA binding was compared 1) between controls and people with PD and 2) between controls, persons with PD with normal cognition (PD-NC), and persons with PD with MCI (PD-MCI).Results[18F]XTRA binding was higher in the occipital cortex of the combined group of PD participants compared to age-similar controls. No regions showed lower binding in PD. VT with, but not without, partial volume correction was different between controls, PD-NC, and PD-MCI groups, and this was driven by higher binding in PD-MCI compared to controls. Regression of regional VT on cognitive domain T-scores, adjusting for age, showed that worse performance in visual-spatial memory tasks was associated with higher VT in the precuneus and the entire parietal cortex.ConclusionsHigher α4β2-nAChR binding in posterior cortical regions is found in PD and associated with worse visual perception and memory, possibly due to lower receptor occupancy by endogenous acetylcholine.