Innate T-cell-derived IL-17A/F protects from bleomycin-induced acute lung injury but not bleomycin or adenoviral TGF-β1-induced lung fibrosis in mice. Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • The pathobiology of IL-17 in lung fibrogenesis is controversial. Here we examined the role of IL-17A/F in bleomycin (BLM) and adenoviral TGF-β1-induced lung fibrosis in mice. In both experimental models, WT and IL17af-/- mice showed increased collagen contents and remodeled lung architecture as assessed by histopathological examination, suggesting that IL-17A/F is dispensable for lung fibrogenesis. However, IL17af-/- mice responded to the BLM challenge with perturbed lung leukocyte subset recruitment. More specifically, bleomycin triggered angiocentric neutrophilic infiltrations of the lung accompanied by increased mortality of IL17af-/- but not WT mice. WT bone marrow transplantation failed to correct this phenotype in BLM-challenged IL17af-/- mice. Conversely, IL17a/f-/- bone marrow transplantation → WT did not perturb lung leukocytic responses upon BLM. At the same time, IL17af-/- mice treated with recombinant IL-17A/F showed an attenuated lung inflammatory response to BLM. Together, the data show that the degree of BLM-driven acute lung injury was critically dependent on the presence of IL-17A/F, while in both models, the fibrotic remodeling process was not.

authors

  • Moog, Marie T
  • Baltes, Melina
  • Röpke, Tina
  • Aschenbrenner, Franziska
  • Maus, Regina
  • Stolper, Jennifer
  • Jonigk, Danny
  • Prinz, Immo
  • Kolb, Martin Rainer
  • Maus, Ulrich A

publication date

  • December 2024