Spatial attention in three-dimensional space: A meta-analysis for the near advantage in target detection and localization. Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Studies have explored how human spatial attention appears allocated in three-dimensional (3D) space. It has been demonstrated that target distance from the viewer can modulate performance in target detection and localization tasks: reaction times are shorter when targets appear nearer to the observer compared to farther distances (i.e., near advantage). Times have reached to quantitatively analyze this literature. In the current meta-analysis, 29 studies (n = 1260 participants) examined target detection and localization across 3-D space. Moderator analyses included: detection vs localization tasks, spatial cueing vs uncued tasks, control of retinal size across depth, central vs peripheral targets, real-space vs stereoscopic vs monocular depth environments, and inclusion of in-trial motion. The analyses revealed a near advantage for spatial attention that was affected by the moderating variables of controlling for retinal size across depth, the use of spatial cueing tasks, and the inclusion of in-trial motion. Overall, these results provide an up-to-date quantification of the effect of depth and provide insight into methodological differences in evaluating spatial attention.

publication date

  • October 2024