Oculomotor behaviors in youth with an eating disorder: findings from a video-based eye tracking task.
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
BACKGROUND: The oculomotor circuit spans many cortical and subcortical areas that have been implicated in psychiatric disease. This, combined with previous findings, suggests that eye tracking may be a useful method to investigate eating disorders. Therefore, this study aimed to assess oculomotor behaviors in youth with and without an eating disorder. METHODS: Female youth with and without an eating disorder completed a structured task involving randomly interleaved pro-saccade (toward at a stimulus) and anti-saccade (away from stimulus) trials with video-based eye tracking. Differences in saccades (rapid eye movements between two points), eye blinks and pupil were examined. RESULTS: Youth with an eating disorder (n = 65, Mage = 17.16 ± 3.5 years) were compared to healthy controls (HC; n = 65, Mage = 17.88 ± 4.3 years). The eating disorder group was composed of individuals with anorexia nervosa (n = 49), bulimia nervosa (n = 7) and other specified feeding or eating disorder (n = 9). The eating disorder group was further divided into two subgroups: individuals with a restrictive spectrum eating disorder (ED-R; n = 43) or a bulimic spectrum eating disorder (ED-BP; n = 22). In pro-saccade trials, the eating disorder group made significantly more fixation breaks than HCs (F(1,128) = 5.33, p = 0.023). The ED-BP group made the most anticipatory pro-saccades, followed by ED-R, then HCs (F(2,127) = 3.38, p = 0.037). Groups did not differ on rate of correct express or regular latency pro-saccades. In anti-saccade trials, groups only significantly differed on percentage of direction errors corrected (F(2, 127) = 4.554, p = 0.012). The eating disorder group had a significantly smaller baseline pupil size (F(2,127) = 3.60, p = 0.030) and slower pro-saccade dilation velocity (F(2,127) = 3.30, p = 0.040) compared to HCs. The ED-R group had the lowest blink probability during the intertrial interval (ITI), followed by ED-BP, with HCs having the highest ITI blink probability (F(2,125) = 3.63, p = 0.029). CONCLUSIONS: These results suggest that youth with an eating disorder may have different oculomotor behaviors during a structured eye tracking task. The oculomotor behavioral differences observed in this study presents an important step towards identifying neurobiological and cognitive contributions towards eating disorders.