abstract
- The demand for green hydrogen has raised concerns over the availability of iridium used in oxygen evolution reaction catalysts. We identify catalysts with the aid of a machine learning-aided computational pipeline trained on more than 36,000 mixed metal oxides. The pipeline accurately predicts Pourbaix decomposition energy (Gpbx) from unrelaxed structures with a mean absolute error of 77 meV per atom, enabling us to screen 2070 new metallic oxides with respect to their prospective stability under acidic conditions. The search identifies Ru0.6Cr0.2Ti0.2O2 as a candidate having the promise of increased durability: experimentally, we find that it provides an overpotential of 267 mV at 100 mA cm-2 and that it operates at this current density for over 200 h and exhibits a rate of overpotential increase of 25 μV h-1. Surface density functional theory calculations reveal that Ti increases metal-oxygen covalency, a potential route to increased stability, while Cr lowers the energy barrier of the HOO* formation rate-determining step, increasing activity compared to RuO2 and reducing overpotential by 40 mV at 100 mA cm-2 while maintaining stability. In situ X-ray absorption spectroscopy and ex situ ptychography-scanning transmission X-ray microscopy show the evolution of a metastable structure during the reaction, slowing Ru mass dissolution by 20× and suppressing lattice oxygen participation by >60% compared to RuO2.