Home
Scholarly Works
Octave-spanning supercontinuum generation in a...
Journal article

Octave-spanning supercontinuum generation in a CMOS-compatible thin Si3N4 waveguide coated with highly nonlinear TeO2.

Abstract

Supercontinuum generation (SCG) is an important nonlinear optical process enabling broadband light sources for many applications, for which silicon nitride (Si3N4) has emerged as a leading on-chip platform. To achieve suitable group velocity dispersion and high confinement for broadband SCG the Si3N4 waveguide layer used is typically thick (>∼700 nm), which can lead to high stress and cracks unless specialized processing steps are used. Here, we report on efficient octave-spanning SCG in a thinner moderate-confinement 400-nm Si3N4 platform using a highly nonlinear tellurium oxide (TeO2) coating. An octave supercontinuum spanning from 0.89 to 2.11 µm is achieved at a low peak power of 258 W using a 100-fs laser centered at 1565 nm. Our numerical simulations agree well with the experimental results giving a nonlinear parameter of 2.5 ± 0.5 W-1m-1, an increase by a factor of 2.5, when coating the Si3N4 waveguide with a TeO2 film. This work demonstrates highly efficient SCG via effective dispersion engineering and an enhanced nonlinearity in CMOS-compatible hybrid TeO2-Si3N4 waveguides and a promising route to monolithically integrated nonlinear, linear, and active functionalities on a single silicon photonic chip.

Authors

Mbonde HM; Singh N; Segat Frare BL; Sinobad M; Ahmadi PT; Hashemi B; Bonneville DB; Mascher P; Kärtner FX; Bradley JDB

Journal

Optics Letters, Vol. 49, No. 10, pp. 2725–2728

Publisher

Optica Publishing Group

Publication Date

May 15, 2024

DOI

10.1364/ol.503820

ISSN

0146-9592

Contact the Experts team