129Xe MRI Ventilation Textures and Longitudinal Quality-of-Life Improvements in Long-COVID Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • RATIONALE AND OBJECTIVES: It remains difficult to predict longitudinal outcomes in long-COVID, even with chest CT and functional MRI. 129Xe MRI reflects airway dysfunction, measured using ventilation defect percent (VDP) and in long-COVID patients, MRI VDP was abnormal, suggestive of airways disease. While MRI VDP and quality-of-life improved 15-month post-COVID infection, both remained abnormal. To better understand the relationship of airways disease and quality-of-life improvements in patients with long-COVID, we extracted 129Xe ventilation MRI textures and generated machine-learning models in an effort to predict improved quality-of-life, 15-month post-infection. MATERIALS AND METHODS: Long-COVID patients provided written-informed consent to 3-month and 15-month post-infection visits. Pyradiomics was used to extract 129Xe ventilation MRI texture features, which were ranked using a Random-Forest classifier. Top-ranking features were used in classification models to dichotomize patients based on St. George's Respiratory Questionnaire (SGRQ) score improvement greater than the minimal-clinically-important-difference (MCID). Classification performance was evaluated using the area under the receiver-operator-characteristic-curve (AUC), sensitivity, and specificity. RESULTS: 120 texture features were extracted from 129Xe ventilation MRI in 44 long-COVID participants (54 ± 14 years), including 30 (52 ± 12 years) with ΔSGRQ≥MCID and 14 (58 ± 18 years) with ΔSGRQ

authors

  • Kooner, Harkiran K
  • Sharma, Maksym
  • McIntosh, Marrissa J
  • Dhaliwal, Inderdeep
  • Nicholson, J Michael
  • Kirby, Miranda
  • Svenningsen, Sarah
  • Parraga, Grace

publication date

  • April 2024