An Adaptive Flux-Weakening Strategy Considering High-Speed Operation of Dual Three-Phase PM Machine for Electric Vehicles Conferences uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • <div class="section abstract"><div class="htmlview paragraph">Dual three-phase (DTP) permanent magnet synchronous machines (PMSMs) are becoming attractive for electric vehicle (EV) propulsion systems in the automotive industry. Flux-weakening (FW) control technique is important to ensure DTP-PMSMs operating in high-speed range. This paper proposes an adaptive FW control algorithm to ensure better performance and stability in variant speeds. A small-signal model is developed to obtain the adaptive gain for a constant controller bandwidth regardless of the speeds. The proposed FW controller is implemented, tuned, and validated on a DTP-PMSM experiment setup. The proposed method improves the FW performances in terms of torque and system stability, compared with the non-adaptive FW controller. Moreover, the harmonics analysis shows an inevitable xy-components affecting the overall performances. The effect of xy controller gain is further investigated for the FW operation.</div></div>