Interfacial Challenge for Solid-State Lithium Batteries- Liquid Addition Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • All solid-state lithium batteries with garnet electrolytes (Li7La3Zr2O12, LLZO) are promising energy storage devices that have gained increasing attention due to their huge potential towards non-flammability and higher energy density. However, reported solid-state lithium batteries cannot achieve the projected energy density (> 500 Wh/kg at the cell level) mainly due to insufficient contact and poor compatibility between LLZO and electrodes. The use of liquid electrolytes in small quantities has been suggested as a component in the quasi-solid hybrid electrolytes to address these two issues. However, the working principle of liquid electrolytes added as the interface inside the batteries is not clear yet. This study added 10L carbonate-based liquid electrolyte between LLZO and LiNi0.6Mn0.6Co0.2O2 (NMC 622) cathode. The assembled Li|LLZO|NMC 622 cell exhibited an initial discharge capacity of 168 mAh g-1 with a capacity retention ratio of ~82 % after 28 cycles. Scanning Transmission X-ray Microscopy revealed the reaction of LE with garnet and NMC 622. More importantly, the LE decomposed and solidified during the cycling process. Decomposed LE participated in the formation of a newly-identified solid-liquid electrolyte interface (SLEI) just after the 1st cycle. Furthermore, the X-ray Absorption Spectroscopy results indicated that the SLEI consisted predominantly of LiF, LaF3, Li2O, and Li2CO3 species. Overall, this study proved the solidification of liquid electrolytes at the garnet/cathode interface. The formation of SLEI effectively suppressed the degradation of the garnet electrolyte and stabilized the battery cycling performance. More efforts are required to optimize the liquid and establish a more stable SLEI that could expand the cycling life of the batteries.

authors

  • Yan, Shuo
  • Yim, Chae-Ho
  • Merati, Ali
  • Baranova, Elena A
  • Abu-Lebdeh, Yaser
  • Weck, Arnaud

publication date

  • August 28, 2023