Enhancement of protein immobilization on polydimethylsiloxane using a synergistic combination of polydopamine and micropattern surface modification Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Understanding protein interactions at biointerfaces is critical for the improved design of biomaterials and medical devices. Polydimethylsiloxane (PDMS) is used for numerous device applications, and surface modifications can enhance protein immobilization and the response to cells. A multifunctional approach combining topographical and biochemical modifications was applied to PDMS by fabricating 10-20 µm scale patterns onto PDMS surfaces and by coating with polydopamine (PDA). The modifications were confirmed by surface characterization and bovine serum albumin (BSA), fibrinogen (Fg), and fetuin-A (Fet-A) were radiolabeled with 125I. The amounts of protein attached to the surface before and after elution with sodium dodecyl sulfate (SDS) were quantified from single and complex multi-protein solutions to determine protein stability and competitive binding. The PDA coatings were the most stable and capable of immobilizing the highest levels of all proteins. Furthermore, combinations of PDA coatings with the smallest micropatterns provided an additional improvement, enhancing the amount immobilized and the stability. The adsorption of BSA and Fg from plasma demonstrated competitive binding and possible orientation changes, respectively. It was determined that Fet-A, a less studied protein, adsorbed from plasma at low levels, but the adsorption from fetal bovine serum (FBS) was significantly greater, providing important quantification data from radiolabeling that is relevant to many cell culture studies. Overall, combining topography and PDA modification has a synergistic effect on improving protein immobilization. These findings provide new insight on the quantities of proteins bound to PDMS and PDA coatings with implications for cell interactions in various biotechnology and medical applications.

publication date

  • November 22, 2023