Durability of GFRP and CFRP Bars in the Pore Solution of Calcium Sulfoaluminate Cement Concrete Made with Fresh or Seawater Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Calcium sulfoaluminate cement concrete (CSAC) reinforced by fiber-reinforced polymer (FRP) bars, termed bars for brevity, is a good alternative to steel-reinforced concrete in marine environments due to the corrosion resistance of FRP and the lower pH of CSAC. For the first time, multi-mechanical tests are conducted to compare the durability of glass FRP (GFRP) to that of carbon FRP (CFRP) after exposure to CSAC pore solution. The bars were immersed in a simulated pore solution of CSAC made with either fresh water and river sand or with seawater and sea sand. Solution temperature was held constant at 30 °C, 45 °C or 60 °C for 30, 60, 90 and 180 days of immersion. Tensile, horizontal and transverse shear tests, as well as detailed microstructural analyses, were conducted to determine the level and mechanisms of degradation for each type of bar. Sea salt increases the degradation of both bars, but it degrades GFRP more than CFRP. The bars’ retained tensile strength is a reliable indicator of their durability, while their post-exposure horizontal and transverse shear strengths are found inconsistent and counter intuitive. In the GFRP, the fiber, the epoxy matrix and their interface suffered damage, but in the CFRP, the carbon fiber was not damaged. Under the test conditions in this study, the maximum reduction in the tensile strength of the GFRP was 56.9% while that of CFRP was 15.1%. Based on the relevant ASTM standard, the CFRP bar satisfies the alkaline resistance requirement of the standard in the CSAC pore solution with and without salt, whereas the GFRP bar does not meet the same requirement in the above pore solution with salt.

publication date

  • August 4, 2023