Home
Scholarly Works
A pBCI to Predict Attentional Error Before it...
Conference

A pBCI to Predict Attentional Error Before it Happens in Real Flight Conditions

Abstract

Accident analyses have revealed that pilots can fail to process auditory stimuli such as alarms, a phenomenon known as inattentional deafness. The motivation of this research is to develop a passive brain computer interface that can predict the occurence of this critical phenomenon during real flight conditions. Ten volunteers, equipped with a dry-EEG system, had to fly a challenging flight scenario while responding to auditory alarms by button press. The behavioral results disclosed that the pilots missed 36% of the auditory alarms. ERP analyses confirm that this phenomenon affects auditory processing at an early (N100) and late (P300) stages as the consequence of a potential attentional bottleneck mechanism. Intersubject classification was carried out over frequency features extracted three second epochs before the alarms’ onset using sparse representation for classification (SRC), sparse and dense representation (SDR) and more conventional approach such as linear discriminant analysis (LDA), shrinkage LDA and nearest neighbor (1NN). In the best case, SRC and SDR gave respectively a performance of 66.9% and 65.4% of correct mean classification rate to predict the occurrence of inattentional deafness, outperforming LDA (60.6%), sLDA (60%) and 1 NN (59.6%). These results open promising perspectives for the implementation of neuroadaptive automation with as ultimate goal to enhance alarm stimulation delivery so that it is perceived and acted upon.

Authors

Dehais F; Rida I; Roy RN; Iversen J; Mullen T; Callan D

Volume

00

Pagination

pp. 4155-4160

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Publication Date

October 9, 2019

DOI

10.1109/smc.2019.8914010

Name of conference

2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
View published work (Non-McMaster Users)

Contact the Experts team