A WEIGHT-OF-EVIDENCE APPROACH TO THE ASSESSMENT OF ECOLOGICAL RISK FROM HISTORICAL CONTAMINATION OF OTTAWA RIVER SEDIMENTS NEAR CHALK RIVER LABORATORIES Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Canadian Nuclear Laboratories’ Chalk River Laboratories (CRL) site is situated on the banks of the Ottawa River, about 180 km northwest of the City of Ottawa. Since 1947, the Ottawa River has received effluent from CRL’s operations. Since this time, and in particular during the operation of the national research experimental research reactor (1947–1992), radionuclides (mainly 60Co and 137Cs) and mercury released in effluents have accumulated in deep-water sediments downstream of CRL. In the following, we present a holistic summary of characterization of the historical contamination and ecological risk assessment work completed to date. The evaluation included (i) comparisons of recommended benchmark dose and screening levels with concentrations in water and sediment, (ii) determination of relevant exposure pathways and biological receptors, (iii) measured and (or) modelled contaminant exposure to benthic receptors and trophic transfer of contaminants to upper trophic level receptors, (iv) whole-sediment laboratory toxicity tests using benthic invertebrates and fish, and (v) field studies assessing possible intermediate or long-term effects on aquatic biota at the population and community levels. The ecological risk related to the contaminated sediment site was assessed using multiple lines of evidence and a weight-of-evidence approach. Despite concentrations of anthropogenic radionuclides and mercury above screening levels in Ottawa River sediments near CRL, the laboratory toxicity tests, radiological dose and mercury bioaccumulation modelling, and biological surveys of benthic invertebrates and fish indicated no significant adverse effects. Ecological risk to Ottawa River benthic invertebrates, fish, fish-eating birds and mammals from historical sediment contamination near CRL is low-to-negligible, and levels of risk will continue to decline as sediment-bound radionuclides decay and contamination is buried by new sediment.

publication date

  • December 1, 2015