Association of Arterial Stiffness Index and Brain Structure in the UK Biobank: A 10-Year Retrospective Analysis. Journal Articles uri icon

  •  
  • Overview
  •  
  • Research
  •  
  • Identity
  •  
  • Additional Document Info
  •  
  • View All
  •  

abstract

  • Arterial stiffening and changes in brain structure both occur with normal aging and can be exacerbated via acquired health conditions. While cross-sectional associations exist, the longitudinal relationship between arterial stiffness and brain structure remains unclear. In this study, we investigated 1) associations between baseline arterial stiffness index (ASI) and brain structure (global and regional grey matter volumes (GMV), white matter hyperintensities (WMH)) 10-years post-baseline (10.4±0.8 years) and 2) associations between the 10-year change in ASI from baseline and brain structure 10-years post-baseline in 650 healthy middle- to older-aged adults (53.4±7.5 years) from the UK Biobank. We observed significant associations between baseline ASI and GMV (p<0.001) and WMH (p=0.0036) 10-years post-baseline. No significant associations between 10-year change in ASI and brain structure (global GMV p=0.24; WMH volume p=0.87) were observed. There were significant associations of baseline ASI in 2 of 60 regional brain volumes analyzed (right posterior superior temporal gyrus p=0.001; left superior lateral occipital cortex p<0.001). Strong associations with baseline ASI, but not changes in ASI over 10-years, suggest arterial stiffness at the entry point of older adulthood is more impactful on brain structure 10-years later compared to age-related stiffening. Based on these associations, we suggest clinical monitoring and potential intervention for reducing arterial stiffness should occur in midlife to reduce vascular contributions to structural changes in the brain, supporting a healthy trajectory of brain aging. Our findings also support use of ASI as a surrogate for gold standard measures in showing overall relationships between arterial stiffness and brain structure.

publication date

  • August 1, 2024