The Generic, Incommensurate Transition in the two-dimensional Boson Hubbard Model
Abstract
The generic transition in the boson Hubbard model, occurring at an
incommensurate chemical potential, is studied in the link-current
representation using the recently developed directed geometrical worm
algorithm. We find clear evidence for a multi-peak structure in the energy
distribution for finite lattices, usually indicative of a first order phase
transition. However, this multi-peak structure is shown to disappear in the
thermodynamic limit revealing that the true phase transition is second order.
These findings cast doubts over the conclusion drawn in a number of previous
works considering the relevance of disorder at this transition.