Vortex in a trapped Bose-Einstein condensate with dipole-dipole interactions
Abstract
We calculate the critical rotation frequency at which a vortex state becomes
energetically favorable over the vortex-free ground state in a harmonically
trapped Bose-Einstein condensate whose atoms have dipole-dipole interactions as
well as the usual s-wave contact interactions. In the Thomas-Fermi
(hydrodynamic) regime, dipolar condensates in oblate cylindrical traps (with
the dipoles aligned along the axis of symmetry of the trap) tend to have lower
critical rotation frequencies than their purely s-wave contact interaction
counterparts. The converse is true for dipolar condensates in prolate traps.
Quadrupole excitations and centre of mass motion are also briefly discussed as
possible competing mechanisms to a vortex as means by which superfluids with
partially attractive interactions might carry angular momentum