Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions
Abstract
Eigenvalues and eigenfunctions of Mathieu's equation are found in the short
wavelength limit using a uniform approximation (method of comparison with a
`known' equation having the same classical turning point structure) applied in
Fourier space. The uniform approximation used here relies upon the fact that by
passing into Fourier space the Mathieu equation can be mapped onto the simpler
problem of a double well potential. The resulting eigenfunctions (Bloch waves),
which are uniformly valid for all angles, are then used to describe the
semiclassical scattering of waves by potentials varying sinusoidally in one
direction. In such situations, for instance in the diffraction of atoms by
gratings made of light, it is common to make the Raman-Nath approximation which
ignores the motion of the atoms inside the grating. When using the
eigenfunctions no such approximation is made so that the dynamical diffraction
regime (long interaction time) can be explored.