Scaling, Propagation, and Kinetic Roughening of Flame Fronts in Random Media
Abstract
We introduce a model of two coupled reaction-diffusion equations to describe
the dynamics and propagation of flame fronts in random media. The model
incorporates heat diffusion, its dissipation, and its production through
coupling to the background reactant density. We first show analytically and
numerically that there is a finite critical value of the background density,
below which the front associated with the temperature field stops propagating.
The critical exponents associated with this transition are shown to be
consistent with mean field theory of percolation. Second, we study the kinetic
roughening associated with a moving planar flame front above the critical
density. By numerically calculating the time dependent width and equal time
height correlation function of the front, we demonstrate that the roughening
process belongs to the universality class of the Kardar-Parisi-Zhang interface
equation. Finally, we show how this interface equation can be analytically
derived from our model in the limit of almost uniform background density.