Insulin prevents liver damage and preserves liver function in lipopolysaccharide-induced endotoxemic rats
Journal Articles
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
BACKGROUND/AIMS: Liver integrity and function are crucial for survival of patients suffering from trauma, operations or infections. Insulin decreased mortality and prevented the incidence of multi organ failure and infection in critically ill patients. The aim of the present study was to determine whether insulin exerts positive effects on hepatic homeostasis and function during endotoxemia. METHODS: Endotoxemic rats received either saline or insulin. Hepatic morphology and function was determined by measuring the effect of insulin on liver proteins, enzymes, hepatocyte apoptosis and proliferation including caspases-3 and -9 and Bcl-2. Intrahepatic ATP, glucose and lactate concentration were determined by bioluminescence. To determine possible molecular changes the effect of insulin on hepatic cytokine mRNA and gene profile analysis were assessed. RESULTS: Insulin significantly improved hepatic protein synthesis by increasing albumin and decreasing c-reactive protein, P<0.05. Insulin attenuated hepatic damage by decreasing AST and ALT, P<0.05. Improved liver morphology was due to decreased hepatocyte apoptosis along with decreased caspase-3 concentration and increased hepatocyte proliferation along with Bcl-2 concentration, P<0.05. Insulin decreased hepatic IL-1beta, IL-6 and MIF mRNA and improved hepatic glucose metabolism and glycolysis, P<0.05. GeneChip analysis revealed an anti-inflammatory effect of insulin. CONCLUSIONS: Insulin improves hepatic integrity, hepatic glucose metabolism and hepatic function by increasing cell survival and attenuating the hepatic inflammatory response in endotoxemic rats.